Large deviation principle for the backward continued fraction expansion

研究成果: Article査読

抄録

We investigate stochastic properties of the backward continued fraction expansion of irrational numbers in (0,1). For the mean process associated with a real-valued observable which depends only on the first digit of the expansion, we establish the large deviation principle. For any such observable which is non-negative, we completely determine the set of minimizers of the rate function in terms of a growth rate of the observable. Our method of proof employs the thermodynamic formalism for topological Markov shifts, and a multifractal analysis of pointwise Lyapunov exponents for the Rényi map generating the backward continued fraction expansion.

本文言語English
ページ(範囲)153-172
ページ数20
ジャーナルStochastic Processes and their Applications
144
DOI
出版ステータスPublished - 2022 2月

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Large deviation principle for the backward continued fraction expansion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル