Large deviation principle in one-dimensional dynamics

Yong Moo Chung, Juan Rivera-Letelier, Hiroki Takahasi

研究成果: Article査読

抄録

We study the dynamics of smooth interval maps with non-flat critical points. For every such a map that is topologically exact, we establish the full (level-2) Large Deviation Principle for empirical means. In particular, the Large Deviation Principle holds for every non-renormalizable quadratic map. This includes the maps without physical measure found by Hofbauer and Keller, and challenges the widely-shared view of the Large Deviation Principle as a refinement of laws of large numbers.

本文言語English
ページ(範囲)853-888
ページ数36
ジャーナルInventiones Mathematicae
218
3
DOI
出版ステータスPublished - 2019 12 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Large deviation principle in one-dimensional dynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル