Large deviations of realized volatility

Shin Kanaya, Taisuke Otsu

研究成果: Article査読

5 被引用数 (Scopus)

抄録

This paper studies large and moderate deviation properties of a realized volatility statistic of high frequency financial data. We establish a large deviation principle for the realized volatility when the number of high frequency observations in a fixed time interval increases to infinity. Our large deviation result can be used to evaluate tail probabilities of the realized volatility. We also derive a moderate deviation rate function for a standardized realized volatility statistic. The moderate deviation result is useful for assessing the validity of normal approximations based on the central limit theorem. In particular, it clarifies that there exists a trade-off between the accuracy of the normal approximations and the path regularity of an underlying volatility process. Our large and moderate deviation results complement the existing asymptotic theory on high frequency data. In addition, the paper contributes to the literature of large deviation theory in that the theory is extended to a high frequency data environment.

本文言語English
ページ(範囲)546-581
ページ数36
ジャーナルStochastic Processes and their Applications
122
2
DOI
出版ステータスPublished - 2012 2
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Large deviations of realized volatility」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル