LCR-SMPL: Toward Real-Time Human Detection and 3D Reconstruction from a Single RGB Image

Elena Pena-Tapia, Ryo Hachiuma, Antoine Pasquali, Hideo Saito

研究成果: Conference contribution

抄録

This paper presents a novel method for simultaneous human detection and 3D shape reconstruction from a single RGB image. It offers a low-cost alternative to existing motion capture solutions, allowing to reconstruct realistic human 3D shapes and poses by leveraging the speed of an object-detection based architecture and the extended applicability of a parametric human mesh model. Evaluation results using a synthetic dataset show that our approach is on-par with conventional 3D reconstruction methods in terms of accuracy, and outperforms them in terms of inference speed, particularly in the case of multi-person images.

本文言語English
ホスト出版物のタイトルAdjunct Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ211-212
ページ数2
ISBN(電子版)9781728176758
DOI
出版ステータスPublished - 2020 11
イベント2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2020 - Virtual, Recife, Brazil
継続期間: 2020 11 92020 11 13

出版物シリーズ

名前Adjunct Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2020

Conference

Conference2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2020
CountryBrazil
CityVirtual, Recife
Period20/11/920/11/13

ASJC Scopus subject areas

  • Computer Science Applications
  • Media Technology
  • Modelling and Simulation

フィンガープリント 「LCR-SMPL: Toward Real-Time Human Detection and 3D Reconstruction from a Single RGB Image」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル