Learning novel objects using out-of-vocabulary word segmentation and object extraction for home assistant robots

Muhammad Attamimi, Akira Mizutani, Tomoaki Nakamura, Komei Sugiura, Takayuki Nagai, Naoto Iwahashi, Hiroyuki Okada, Takashi Omori

研究成果: Conference contribution

13 被引用数 (Scopus)

抄録

This paper presents a method for learning novel objects from audio-visual input. Objects are learned using out-of-vocabulary word segmentation and object extraction. The latter half of this paper is devoted to evaluations. We propose the use of a task adopted from the RoboCup@Home league as a standard evaluation for real world applications. We have implemented proposed method on a real humanoid robot and evaluated it through a task called "Supermarket". The results reveal that our integrated system works well in the real application. In fact, our robot outperformed the maximum score obtained in RoboCup@Home 2009 competitions.

本文言語English
ホスト出版物のタイトル2010 IEEE International Conference on Robotics and Automation, ICRA 2010
ページ745-750
ページ数6
DOI
出版ステータスPublished - 2010 8 27
外部発表はい
イベント2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
継続期間: 2010 5 32010 5 7

出版物シリーズ

名前Proceedings - IEEE International Conference on Robotics and Automation
ISSN(印刷版)1050-4729

Other

Other2010 IEEE International Conference on Robotics and Automation, ICRA 2010
国/地域United States
CityAnchorage, AK
Period10/5/310/5/7

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「Learning novel objects using out-of-vocabulary word segmentation and object extraction for home assistant robots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル