Learning Sensor Interdependencies for IMU-to-Segment Assignment

Tomoya Kaichi, Tsubasa Maruyama, Mitsunori Tada, Hideo Saito

研究成果: Article査読


Due to the recent technological advances in inertial measurement units (IMUs), many applications for the measurement of human motion using multiple body-worn IMUs have been developed. In these applications, each IMU has to be attached to a predefined body segment. A technique to identify the body segment on which each IMU is mounted allows users to attach inertial sensors to arbitrary body segments, which avoids having to remeasure due to incorrect attachment of the sensors. We address this IMU-to-segment assignment problem and propose a novel end-to-end learning model that incorporates a global feature generation module and an attention-based mechanism. The former extracts the feature representing the motion of all attached IMUs, and the latter enable the model to learn the dependency relationships between the IMUs. The proposed model thus identifies the IMU placement based on the features from global motion and relevant IMUs. We quantitatively evaluated the proposed method using synthetic and real public datasets with three sensor configurations, including a full-body configuration mounting 15 sensors. The results demonstrated that our approach significantly outperformed the conventional and baseline methods for all datasets and sensor configurations.

ジャーナルIEEE Access
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)


「Learning Sensor Interdependencies for IMU-to-Segment Assignment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。