Light Controlled Optical Aharonov-Bohm Oscillations in a Single Quantum Ring

Heedae Kim, Seongho Park, Rin Okuyama, Kwangseuk Kyhm, Mikio Eto, Robert A. Taylor, Gilles Nogues, Le Si Dang, Marek Potemski, Koochul Je, Jongsu Kim, Jihoon Kyhm, Jindong Song

研究成果: Article査読

7 被引用数 (Scopus)


We found that optical Aharonov-Bohm oscillations in a single GaAs/GaAlAs quantum ring can be controlled by excitation intensity. With a weak excitation intensity of 1.2 kW cm-2, the optical Aharonov-Bohm oscillation period of biexcitons was observed to be half that of excitons in accordance with the period expected for a two-exciton Wigner molecule. When the excitation intensity is increased by an order of magnitude (12 kW cm-2), a gradual deviation of the Wigner molecule condition occurs with decreased oscillation periods and diamagnetic coefficients for both excitons and biexcitons along with a spectral shift. These results suggest that the effective orbit radii and rim widths of electrons and holes in a single quantum ring can be modified by light intensity via photoexcited carriers, which are possibly trapped at interface defects resulting in a local electric field.

ジャーナルNano Letters
出版ステータスPublished - 2018 10 10

ASJC Scopus subject areas

  • バイオエンジニアリング
  • 化学 (全般)
  • 材料科学(全般)
  • 凝縮系物理学
  • 機械工学


「Light Controlled Optical Aharonov-Bohm Oscillations in a Single Quantum Ring」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。