Limits on amplification by Aharonov-Albert-Vaidman weak measurement

Tatsuhiko Koike, Saki Tanaka

研究成果: Article査読

52 被引用数 (Scopus)


We analyze the amplification by the Aharonov-Albert-Vaidman weak quantum measurement on a Sagnac interferometer up to all orders of the coupling strength between the measured system and the measuring device. The amplifier transforms a small tilt of a mirror into a large transverse displacement of the laser beam. The conventional analysis has shown that the measured value is proportional to the weak value, so that the amplification can be made arbitrarily large in the cost of decreasing output laser intensity. It is shown that the measured displacement and the amplification factor are in fact not proportional to the weak value and rather vanish in the limit of infinitesimal output intensity. We derive the optimal overlap of the pre- and postselected states with which the amplification become maximum. We also show that the nonlinear effects begin to arise in the performed experiments so that any improvements in the experiment, typically with an amplification greater than 100, should require the nonlinear theory in translating the observed value to the original displacement.

ジャーナルPhysical Review A - Atomic, Molecular, and Optical Physics
出版ステータスPublished - 2011 12月 5

ASJC Scopus subject areas

  • 原子分子物理学および光学


「Limits on amplification by Aharonov-Albert-Vaidman weak measurement」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。