Low Complexity Belief Propagation based MIMO Detection with MMSE Pre-cancellation for Overloaded MIMO systems

Takashi Imamura, Yukitoshi Sanada

研究成果: Conference contribution

抄録

In this paper, the application of minimum mean square error (MMSE) pre-cancellation prior to belief propagation (BP) is proposed as a detection scheme for overloaded multiple-input multiple-output (MIMO). In overloaded MIMO, the loops in a factor graph deteriorate the demodulation performance with BP. Therefore, the proposed scheme applies the MMSE pre-cancellation prior to BP and reduces the number of the loops. Furthermore, it is applied to the selected transmit and receive nodes so that the condition number of an inverse matrix in the MMSE weight matrix is minimized in order to suppress the residual interference and the noise after the MMSE precancellation. It is shown by numerical results obtained through computer simulation that the proposed scheme achieves better bit error rate (BER) performance than BP without the MMSE pre-cancellation. The proposed scheme improves the BER performance by 4.6-5.0 dB at a BER of 5.0 × 10-3 as compared with conventional BP. Numerical results also shows that the MMSE pre-cancellation reduces the complexity in BP by a factor of 1/896 in terms of the number of multiplication operations.

本文言語English
ホスト出版物のタイトル2020 IEEE 92nd Vehicular Technology Conference, VTC 2020-Fall - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728194844
DOI
出版ステータスPublished - 2020 11月
イベント92nd IEEE Vehicular Technology Conference, VTC 2020-Fall - Virtual, Victoria, Canada
継続期間: 2020 11月 18 → …

出版物シリーズ

名前IEEE Vehicular Technology Conference
2020-November
ISSN(印刷版)1550-2252

Conference

Conference92nd IEEE Vehicular Technology Conference, VTC 2020-Fall
国/地域Canada
CityVirtual, Victoria
Period20/11/18 → …

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Low Complexity Belief Propagation based MIMO Detection with MMSE Pre-cancellation for Overloaded MIMO systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル