Lower bounds for the number of edge-crossings over the spine in a topological book embedding of a graph

Hikoe Enomoto, Miki Shimabara Miyauchi, Katsuhiro Ota

研究成果: Article査読

24 被引用数 (Scopus)

抄録

In a topological book embedding of a graph, the graph is drawn in a topological book by placing the vertices along the spine of the book and drawing the edges in the pages; edges are allowed to cross the spine. Earlier results show that every graph having n vertices and m edges can be embedded into a 3-page book with at most O(m log n) edge-crossings over the spine. This paper presents lower bounds on the number of edge-crossings over the spine for a variety of graphs. These bounds show that the upper bound O(m log n) is essentially best possible.

本文言語English
ページ(範囲)149-155
ページ数7
ジャーナルDiscrete Applied Mathematics
92
2-3
DOI
出版ステータスPublished - 1999 6

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「Lower bounds for the number of edge-crossings over the spine in a topological book embedding of a graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル