Magnesium is a key player in neuronal maturation and neuropathology

Ryu Yamanaka, Yutaka Shindo, Kotaro Oka

研究成果: Article査読

28 被引用数 (Scopus)


Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation, differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining Mg2+ within optimal levels according to the biological context, such as cell types, developmental stages, extracellular environments, and pathophysiological conditions, is crucial for development, normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and demyelination. In the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies caused by its versatility and complexity still exist. As Mg2+, at least, plays critical roles in neuronal development, healthy normal functions, and diseases, appropriate Mg2+ supplementation exhibits neurotrophic effects in a majority of cases. Hence, the control of Mg2+ homeostasis can be a candidate for therapeutic targets in neuronal diseases. In this review, recent results regarding the roles of intracellular Mg2+ and its regulatory system in determining the cell phenotype, fate, and diseases in the nervous system are summarized, and an overview of the comprehensive roles of Mg2+ is provided.

ジャーナルInternational journal of molecular sciences
出版ステータスPublished - 2019 7 2

ASJC Scopus subject areas

  • 触媒
  • 分子生物学
  • 分光学
  • コンピュータ サイエンスの応用
  • 物理化学および理論化学
  • 有機化学
  • 無機化学


「Magnesium is a key player in neuronal maturation and neuropathology」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。