Markerless knee joint position measurement using depth data during stair walking

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Climbing and descending stairs are demanding daily activities, and the monitoring of them may reveal the presence of musculoskeletal diseases at an early stage. A markerless system is needed to monitor such stair walking activity without mentally or physically disturbing the subject. Microsoft Kinect v2 has been used for gait monitoring, as it provides a markerless skeleton tracking function. However, few studies have used this device for stair walking monitoring, and the accuracy of its skeleton tracking function during stair walking has not been evaluated. Moreover, skeleton tracking is not likely to be suitable for estimating body joints during stair walking, as the form of the body is different from what it is when it walks on level surfaces. In this study, a new method of estimating the 3D position of the knee joint was devised that uses the depth data of Kinect v2. The accuracy of this method was compared with that of the skeleton tracking function of Kinect v2 by simultaneously measuring subjects with a 3D motion capture system. The depth data method was found to be more accurate than skeleton tracking. The mean error of the 3D Euclidian distance of the depth data method was 43.2 ± 27.5 mm, while that of the skeleton tracking was 50.4 ± 23.9 mm. This method indicates the possibility of stair walking monitoring for the early discovery of musculoskeletal diseases.

本文言語English
論文番号2698
ジャーナルSensors (Switzerland)
17
11
DOI
出版ステータスPublished - 2017 11 22

ASJC Scopus subject areas

  • 分析化学
  • 生化学
  • 原子分子物理学および光学
  • 器械工学
  • 電子工学および電気工学

フィンガープリント

「Markerless knee joint position measurement using depth data during stair walking」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル