Markov processes on the adeles and chebyshev function

研究成果: Article査読

8 被引用数 (Scopus)

抄録

Markov processes on the ring of adeles are constructed, as the limits of Markov chains on some countable sets consisting of subsets of the direct product of real and p-adic fields. As particular cases, we have adelic valued semistable processes. Then it is shown that the values of the Chebyshev function, whose asymptotics is closely related to the zero-free region of the Riemann zeta function, are represented by the expectation of the first exit time for these processes from the set of finite integral adeles.

本文言語English
ページ(範囲)238-244
ページ数7
ジャーナルStatistics and Probability Letters
83
1
DOI
出版ステータスPublished - 2013 1

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Markov processes on the adeles and chebyshev function」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル