Matching problems with delta-matroid constraints

Naonori Kakimura, Mizuyo Takamatsu

研究成果: Conference contribution

抄録

Given an undirected graph G = (V, E) and a directed graph D = (V, A), the master/slave matching problem is to find a matching of maximum cardinality in G such that for each arc (u; v) ∈ A with u being matched, v is also matched. This problem is known to be NP-hard in general, but polynomially solvable in a special case where the maximum size of a connected component of D is at most two. This paper investigates the master/slave matching problem in terms of delta-matroids, which is a generalization of matroids. We first observe that the above polynomially solvable constraint can be interpreted as delta-matroids. We then introduce a new class of matching problem with delta-matroid constraints, which can be solved in polynomial time. In addition, we discuss our problem with additional constraints such as capacity constraints.

本文言語English
ホスト出版物のタイトルTheory of Computing 2012 - Proceedings of the Eighteenth Computing
ホスト出版物のサブタイトルThe Australasian Theory Symposium, CATS 2012
ページ83-92
ページ数10
出版ステータスPublished - 2012
外部発表はい
イベントTheory of Computing 2012 - 18th Computing: The Australasian Theory Symposium, CATS 2012 - Melbourne, VIC, Australia
継続期間: 2012 1月 312012 2月 3

出版物シリーズ

名前Conferences in Research and Practice in Information Technology Series
128
ISSN(印刷版)1445-1336

Other

OtherTheory of Computing 2012 - 18th Computing: The Australasian Theory Symposium, CATS 2012
国/地域Australia
CityMelbourne, VIC
Period12/1/3112/2/3

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • 情報システム
  • ソフトウェア

フィンガープリント

「Matching problems with delta-matroid constraints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル