Mathematical Modeling of Linear Dynamical Quantum Systems

Hendra I. Nurdin, Naoki Yamamoto

研究成果: Chapter

1 被引用数 (Scopus)

抄録

This chapter provides a review of the mathematical theory of linear quantum systems, which is based on the Hudson–Parthasarathy quantum stochastic calculus as a mathematical tool for describing Markov open quantum systems interacting with external propagating quantum fields. A precise definition of linear quantum systems is given as well as quantum stochastic differential equations representing their linear equation of motion in the Heisenberg picture. The important notion of physical realizability for linear quantum stochastic differential equations is introduced, and necessary and sufficient conditions for physical realizability reviewed. Complete parameterizations for linear quantum systems are given, and transfer functions defined. Also, the special class of completely passive linear quantum systems is introduced and the notion of stability for linear quantum systems is developed.

本文言語English
ホスト出版物のタイトルCommunications and Control Engineering
出版社Springer International Publishing
ページ35-71
ページ数37
9783319551999
DOI
出版ステータスPublished - 2017

出版物シリーズ

名前Communications and Control Engineering
番号9783319551999
ISSN(印刷版)0178-5354
ISSN(電子版)2197-7119

ASJC Scopus subject areas

  • 制御およびシステム工学
  • コンピュータ ネットワークおよび通信
  • 制御と最適化

フィンガープリント

「Mathematical Modeling of Linear Dynamical Quantum Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル