Maximal K3's and Hamiltonicity of 4-connected claw-free graphs

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Let cl(G) denote Ryjáček's closure of a claw-free graph G. In this article, we prove the following result. Let G be a 4-connected claw-free graph. Assume that G[NG(T)] is cyclically 3-connected if T is a maximal K3 in G which is also maximal in cl(G). Then G is hamiltonian. This result is a common generalization of Kaiser et al.'s theorem [J Graph Theory 48(4) (2005), 267-276] and Pfender's theorem [J Graph Theory 49(4) (2005), 262-272].

本文言語English
ページ(範囲)40-53
ページ数14
ジャーナルJournal of Graph Theory
70
1
DOI
出版ステータスPublished - 2012 5月

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Maximal K3's and Hamiltonicity of 4-connected claw-free graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル