Meromorphic solutions of a Riccati differential equation with a doubly periodic coefficient

Shun Shimomura

研究成果: Article

3 引用 (Scopus)

抜粋

We treat a Riccati differential equation w′ + w2 + p(z) = 0, where p(z) is a nonconstant doubly periodic meromorphic function. Under certain assumptions, every solution is meromorphic in the whole complex plane. We show that the growth order of it is equal to 2, and examine the frequency of α-points and poles. Furthermore, the number of doubly periodic solutions is discussed.

元の言語English
ページ(範囲)644-651
ページ数8
ジャーナルJournal of Mathematical Analysis and Applications
304
発行部数2
DOI
出版物ステータスPublished - 2005 4 15

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント Meromorphic solutions of a Riccati differential equation with a doubly periodic coefficient' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用