Microstructure-based deep-drawing simulation of knitted fabric reinforced thermoplastic by homogenization theory

N. Takano, Y. Ohnishi, M. Zako, K. Nishiyabu

研究成果: Article査読

38 被引用数 (Scopus)


Process simulation of fiber reinforced composite materials is an important research theme for the development of low-cost and advanced functional composite materials. This paper aims at the simulation of deep-drawing process of knitted fiber reinforced thermoplastics and its verification. The feature of the simulation is that the large deformation of the knitted microstructures can be traced everywhere in the deep-drawn product. The homogenization theory is applied to analyze the micro-macro coupled behaviors of the knitted fabric composite material. By employing a simplified nonlinear computational algorithm, the deep-drawing simulation was carried out on a personal computer. The predicted largely deformed microstructures were compared with the experimental results. The numerical results and experimental ones agreed quite well. This deep-drawing simulation requires us to prepare only the mechanical properties of the constituents, while it provides us all the necessary quantities such as the deformation, strain, stress and stiffness from both microscopic and macroscopic standpoints.

ジャーナルInternational Journal of Solids and Structures
出版ステータスPublished - 2001 8月 10

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学
  • 応用数学


「Microstructure-based deep-drawing simulation of knitted fabric reinforced thermoplastic by homogenization theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。