Minimum MSE based regularization for system identification in the presence of input and output noise

J. Xin, H. Ohmori, A. Sano

研究成果: Conference article査読

4 被引用数 (Scopus)

抄録

The corrected least squares (CLS) approach gives a consistent estimate of a system model in the presence of input and output noises. However, when the input signal is band-limited or strongly correlated, and/or a transfer function model is identified by using an overdetermined model, the CLS estimate often becomes ill-conditioned. To overcome this problem, we propose a regularized CLS estimation method by introducing multiple regularization parameters to minimize the mean squares error (MSE) of the regularized CLS estimate. The asymptotic MSE can be evaluated by considering the third and fourth cross moments of the input and output noises, and an analytical expression of the optimal regularization parameters minimizing the MSE is also clarified. Furthermore, an effective regularization algorithm is given by using only accessible input-output data. The relationship between the regularization using multiple parameters and the truncation of small eigenvalues is investigated and then it is clarified that the proposed regularization scheme is also efficient to decide the order of a transfer function model.

本文言語English
ページ(範囲)1807-1814
ページ数8
ジャーナルProceedings of the IEEE Conference on Decision and Control
2
出版ステータスPublished - 1995 12 1
イベントProceedings of the 1995 34th IEEE Conference on Decision and Control. Part 1 (of 4) - New Orleans, LA, USA
継続期間: 1995 12 131995 12 15

ASJC Scopus subject areas

  • 制御およびシステム工学
  • モデリングとシミュレーション
  • 制御と最適化

フィンガープリント

「Minimum MSE based regularization for system identification in the presence of input and output noise」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル