MIROC-INTEG-LAND version 1: A global biogeochemical land surface model with human water management, crop growth, and land-use change

Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, Seita Emori

研究成果: Article査読

7 被引用数 (Scopus)

抄録

Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can affect the climate system through biogeophysical and biogeochemical effects. To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land-use models. The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balance, human water management, and crop growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG-LAND, spatially detailed information regarding water resources and crop yields is reflected in the prediction of future land-use change, which cannot be considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of the submodels of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions between the submodels. By evaluating the historical simulation, we have confirmed that the model reproduces the observed states well. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand. The newly developed MIROC-INTEG-LAND could be combined with atmospheric and ocean models to develop an integrated earth system model to simulate the interactions among coupled natural-human earth system components.

本文言語English
ページ(範囲)4713-4747
ページ数35
ジャーナルGeoscientific Model Development
13
10
DOI
出版ステータスPublished - 2020 10 2
外部発表はい

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 地球惑星科学(全般)

フィンガープリント

「MIROC-INTEG-LAND version 1: A global biogeochemical land surface model with human water management, crop growth, and land-use change」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル