TY - JOUR
T1 - Modulation of ICAM-1 Expression by Extracellular Glutathione in Hyperoxia-exposed Human Pulmonary Artery Endothelial Cells
AU - Aoki, Takuya
AU - Suzuki, Yukio
AU - Suzuki, Kouichi
AU - Miyata, Atsushi
AU - Oyamada, Yoshitaka
AU - Takasugi, Tomoaki
AU - Mori, Masaaki
AU - Fujita, Hirofumi
AU - Yamaguchi, Kazuhiro
PY - 1996
Y1 - 1996
N2 - To investigate the mechanisms regulating hyperoxia-induced intercellular adhesion molecule-1 (ICAM-1) expression, we studied the effects of antioxidants on ICAM-1 expression, and the relationship between ICAM-1 expression and extracellular glutathione levels in human pulmonary artery endothelial cells (HPAEC) and human umbilical vein endothelial cells (HUVEC). Cells were cultured to confluence and exposed to hyperoxia (90% O2) for 48 h with or without various antioxidants, including superoxide dismutase (SOD), catalase, N-acetylcysteine (NAC), and glutathione. The levels of ICAM-1 expression in the endothelial cells and the concentrations of reduced (GSH) and oxidized glutathione (GSSG) in the media were examined by flow cytometry and spectrophotometry, respectively. After exposure to hyperoxia, ICAM-1 expression was increased, and the supernatant total glutathione was decreased as compared with those at normoxia. SOD did not change ICAM-1 expression. The hyperoxia-induced increase in ICAM-1 expression was even greater with the addition of catalase. The ICAM-1 expression was decreased and the GSH concentration was increased with the addition of NAC. There were negative relationships between the level of ICAM-1 expression and the supernatant total glutathione concentration in catalase-treated HPAEC (R = 0.822, P < 0.0005) and HUVEC (R = 0.567, P < 0.01). Negative relationships were also demonstrated between the level of ICAM-1 expression and the total extracellular glutathione concentrations in NAC-treated HPAEC (R = 0.877, P < 0.0005) and HUVEC (R = 0.727, P < 0.0005). Exogenous GSH decreased ICAM-1 expression in both hyperoxia-exposed HPAEC and HUVEC, while exogenous GSSG did not. These results suggest that extracellular GSH plays a role in regulating hyperoxia-induced ICAM-1 expression in HPAEC and HUVEC.
AB - To investigate the mechanisms regulating hyperoxia-induced intercellular adhesion molecule-1 (ICAM-1) expression, we studied the effects of antioxidants on ICAM-1 expression, and the relationship between ICAM-1 expression and extracellular glutathione levels in human pulmonary artery endothelial cells (HPAEC) and human umbilical vein endothelial cells (HUVEC). Cells were cultured to confluence and exposed to hyperoxia (90% O2) for 48 h with or without various antioxidants, including superoxide dismutase (SOD), catalase, N-acetylcysteine (NAC), and glutathione. The levels of ICAM-1 expression in the endothelial cells and the concentrations of reduced (GSH) and oxidized glutathione (GSSG) in the media were examined by flow cytometry and spectrophotometry, respectively. After exposure to hyperoxia, ICAM-1 expression was increased, and the supernatant total glutathione was decreased as compared with those at normoxia. SOD did not change ICAM-1 expression. The hyperoxia-induced increase in ICAM-1 expression was even greater with the addition of catalase. The ICAM-1 expression was decreased and the GSH concentration was increased with the addition of NAC. There were negative relationships between the level of ICAM-1 expression and the supernatant total glutathione concentration in catalase-treated HPAEC (R = 0.822, P < 0.0005) and HUVEC (R = 0.567, P < 0.01). Negative relationships were also demonstrated between the level of ICAM-1 expression and the total extracellular glutathione concentrations in NAC-treated HPAEC (R = 0.877, P < 0.0005) and HUVEC (R = 0.727, P < 0.0005). Exogenous GSH decreased ICAM-1 expression in both hyperoxia-exposed HPAEC and HUVEC, while exogenous GSSG did not. These results suggest that extracellular GSH plays a role in regulating hyperoxia-induced ICAM-1 expression in HPAEC and HUVEC.
UR - http://www.scopus.com/inward/record.url?scp=0030236360&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030236360&partnerID=8YFLogxK
U2 - 10.1165/ajrcmb.15.3.8810635
DO - 10.1165/ajrcmb.15.3.8810635
M3 - Article
C2 - 8810635
AN - SCOPUS:0030236360
SN - 1044-1549
VL - 15
SP - 319
EP - 327
JO - American Journal of Respiratory Cell and Molecular Biology
JF - American Journal of Respiratory Cell and Molecular Biology
IS - 3
ER -