TY - JOUR
T1 - Molecular mechanism of the reversibility of hepatic fibrosis
T2 - With special reference to the role of matrix metalloproteinases
AU - Okazaki, Isao
AU - Watanabe, Tetsu
AU - Hozawa, Sigenari
AU - Arai, Masao
AU - Maruyama, Katsuya
PY - 2000
Y1 - 2000
N2 - The participation of matrix metalloproteinases (MMP) and their specific inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMP), in both the formation and degradative recovery processes of liver fibrosis were mainly reviewed from the molecular biological aspect. Since authors first reported increased activity of interstitial collagenase in the early stage of hepatic fibrosis in rats induced by chronic CCl4 intoxication, in baboons fed alcohol chronically and in patients with alcoholic fibrosis, other investigators have also demonstrated increased activity biologically and histochemically. However, species-specific differences in response have been found and gene-level research on the rat model has not demonstrated increased mRNA transcription of collagenase. It has also been clarified that activated stellate cells can also produce matrix components. Very recently, authors observed the participation of interstitial collagenase in the recovery from experimental hepatic fibrosis by using polymerase chain reaction northern blotting and in situ hybridization. The in situ hybridization findings not only demonstrated the cells responsible for interstitial collagenase, but also suggested a great deal about the mechanism of recovery from fibrosis. Hepatic stellate cells are activated via the expression of c-myb and nuclear factor-κB (NFκB) which is induced by oxidative stress, and inhibited by antioxidant (1-α-tocopherol) and butylated hydroxytoluene. The activation mechanism is now being revealed. The relationship between the activation mechanism of stellate cells and the production and secretion of MMP and TIMP in the formation and recovery process of hepatic fibrosis should be investigated from the promoter gene level. This approach might help develop a new strategy for the treatment of liver fibrosis. (C) 2000 Blackwell Science Asia Pty Ltd.
AB - The participation of matrix metalloproteinases (MMP) and their specific inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMP), in both the formation and degradative recovery processes of liver fibrosis were mainly reviewed from the molecular biological aspect. Since authors first reported increased activity of interstitial collagenase in the early stage of hepatic fibrosis in rats induced by chronic CCl4 intoxication, in baboons fed alcohol chronically and in patients with alcoholic fibrosis, other investigators have also demonstrated increased activity biologically and histochemically. However, species-specific differences in response have been found and gene-level research on the rat model has not demonstrated increased mRNA transcription of collagenase. It has also been clarified that activated stellate cells can also produce matrix components. Very recently, authors observed the participation of interstitial collagenase in the recovery from experimental hepatic fibrosis by using polymerase chain reaction northern blotting and in situ hybridization. The in situ hybridization findings not only demonstrated the cells responsible for interstitial collagenase, but also suggested a great deal about the mechanism of recovery from fibrosis. Hepatic stellate cells are activated via the expression of c-myb and nuclear factor-κB (NFκB) which is induced by oxidative stress, and inhibited by antioxidant (1-α-tocopherol) and butylated hydroxytoluene. The activation mechanism is now being revealed. The relationship between the activation mechanism of stellate cells and the production and secretion of MMP and TIMP in the formation and recovery process of hepatic fibrosis should be investigated from the promoter gene level. This approach might help develop a new strategy for the treatment of liver fibrosis. (C) 2000 Blackwell Science Asia Pty Ltd.
KW - Activation of stellate cell
KW - Hepatic stellate cell
KW - Matrix metalloproteinases
KW - Myofibroblast
KW - Promoter gene
KW - Tissue inhibitors of matrix metalloproteinases
UR - http://www.scopus.com/inward/record.url?scp=0034124716&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034124716&partnerID=8YFLogxK
U2 - 10.1046/j.1440-1746.2000.02185.x
DO - 10.1046/j.1440-1746.2000.02185.x
M3 - Review article
C2 - 10759217
AN - SCOPUS:0034124716
SN - 0815-9319
VL - 15
SP - 26
EP - 32
JO - Journal of Gastroenterology and Hepatology (Australia)
JF - Journal of Gastroenterology and Hepatology (Australia)
IS - SUPPL.
ER -