Monitoring Volcanic Activity with High Sensitive Infrasound Sensor Using a Piezoresistive Cantilever

Jumpei Shimatani, Hidetoshi Takahashi, Mie Ichihara, Tomoyuki Takahata, Isao Shimoyama

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

In this paper, we propose a high sensitive monitoring method of infrasound evoked by a volcano eruption. The sensor unit is composed of two differential pressure sensors and an air chamber. The pressure resolution of the developed sensor is approximately 0.01 Pa, which is sufficiently small to detect the tiny infrasound. The measurable frequency range is from 0.3 Hz, which is sufficiently low for the infrasound. The sensor units were set at the foot of volcano, Sakurajima, Kagoshima, Japan. It was confirmed that the sensors kept the high sensitive monitoring performance for a month.

本文言語English
ホスト出版物のタイトル2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, MEMS 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ページ783-786
ページ数4
ISBN(電子版)9781728116105
DOI
出版ステータスPublished - 2019 1
外部発表はい
イベント32nd IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2019 - Seoul, Korea, Republic of
継続期間: 2019 1 272019 1 31

出版物シリーズ

名前Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
2019-January
ISSN(印刷版)1084-6999

Conference

Conference32nd IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2019
CountryKorea, Republic of
CitySeoul
Period19/1/2719/1/31

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

フィンガープリント 「Monitoring Volcanic Activity with High Sensitive Infrasound Sensor Using a Piezoresistive Cantilever」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル