Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization

Chien Chung Huang, Naonori Kakimura

研究成果: Article査読

抄録

We consider maximizing a monotone submodular function under a cardinality constraint or a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access to only a small fraction of the data stored in primary memory. We propose the following streaming algorithms taking O(ε− 1) passes: (1) a (1 − e− 1 − ε)-approximation algorithm for the cardinality-constrained problem, (2) a (0.5 − ε)-approximation algorithm for the knapsack-constrained problem. Both of our algorithms run deterministically in O(n) time, using O(K) space, where n is the size of the ground set and K is the size of the knapsack. Here the term O hides a polynomial of logK and ε− 1. Our streaming algorithms can also be used as fast approximation algorithms. In particular, for the cardinality-constrained problem, our algorithm takes O(nε− 1log(ε− 1logK)) time, improving on the algorithm of Badanidiyuru and Vondrák that takes O(nε− 1log(ε− 1K)) time.

本文言語English
ジャーナルTheory of Computing Systems
DOI
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 計算理論と計算数学

フィンガープリント

「Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル