N-step energy of maps and the fixed-point property of random groups

Hiroyasu Izeki, Takefumi Kondo, Shin Nayatani

研究成果: Article査読

6 被引用数 (Scopus)

抄録

We prove that a random group of the graph model associated with a sequence of expanders has the fixed-point property for a certain class of CAT(0) spaces. We use Gromov's criterion for the fixed-point property in terms of the growth of n-step energy of equivariant maps from a finitely generated group into a CAT(0) space, for which we give a detailed proof. We estimate a relevant geometric invariant of the tangent cones of the Euclidean buildings associated with the groups PGL(m,Qr), and deduce from the general result above that the same random group has the fixed-point property for all of these Euclidean buildings with m bounded from above.

本文言語English
ページ(範囲)701-736
ページ数36
ジャーナルGroups, Geometry, and Dynamics
6
4
DOI
出版ステータスPublished - 2012

ASJC Scopus subject areas

  • 幾何学とトポロジー
  • 離散数学と組合せ数学

フィンガープリント

「N-step energy of maps and the fixed-point property of random groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル