Near-infrared light propagation in an adult head model. I. Modeling of low–level scattering in the cerebrospinal fluid layer

Eiji Okada, David T. Delpy

研究成果: Article査読

260 被引用数 (Scopus)

抄録

Adequate modeling of light propagation in a human head is important for quantitative near-infrared spectroscopy and optical imaging. The presence of a nonscattering cerebrospinal fluid (CSF) that surrounds the brain has been previously shown to have a strong effect on light propagation in the head. However, in reality, a small amount of scattering is caused by the arachnoid trabeculae in the CSF layer. In this study, light propagation in an adult head model with discrete scatterers distributed within the CSF layer has been predicted by Monte Carlo simulation to investigate the effect of the small amount of scattering caused by the arachnoid trabeculae in the CSF layer. This low scattering in the CSF layer is found to have little effect on the mean optical path length, a parameter that can be directly measured by a time-resolved experiment. However, the partial optical path length in brain tissue that relates the sensitivity of the detected signal to absorption changes in the brain is strongly affected by the presence of scattering within the CSF layer. The sensitivity of the near-infrared signal to hemoglobin changes induced by brain activation is improved by the effect of a low-scattering CSF layer.

本文言語English
ページ(範囲)2906-2914
ページ数9
ジャーナルApplied Optics
42
16
DOI
出版ステータスPublished - 2003 6月 1

ASJC Scopus subject areas

  • 原子分子物理学および光学
  • 工学(その他)
  • 電子工学および電気工学

フィンガープリント

「Near-infrared light propagation in an adult head model. I. Modeling of low–level scattering in the cerebrospinal fluid layer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル