Neuroendocrine system response modulates oxidative cellular damage in burn patients

Xiao Qi Xie, Yotaro Shinozawa, Junichi Sasaki, Kiyotsugu Takuma, Satoshi Akaishi, Satoshi Yamanouchi, Tomoyuki Endo, Ryosuke Nomura, Michio Kobayashi, Daisuke Kudo, Nobuko Hojo

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Oxygen-derived free radicals play important roles in pathophysiological processes in critically ill patients, but the data characterizing relationships between radicals and neuroendocrine system response are sparse. To search the cue to reduce the oxidative cellular damage from the point of view of neuroendocrine system response, we studied the indicators of neuroendocrine and inflammatory responses excreted in urine in 14 burn patients (42.3 ± 31.4 years old, and 32.3 ± 27.6% burn of total body surface area [%TBSA]) during the first seven days post burn. The daily mean amounts of urinary excretion of 8-hydroxy-2′-deoxy-guanosine (8-OHdG), a marker of oxidative cellular damage, were above the upper limit of the standard value during the studied period. The total amount of urinary excretion of 8-OHdG in the first day post burn correlated with burn severity indices: %TBSA (r = 0.63, p = 0.021) and burn index (r = 0.70, p = 0.008). The daily urinary excretion of 8-OHdG correlated with the daily urinary excretion of norepinephrine and nitrite plus nitrate (NOx) during the studied period except day 2 post burn, and correlated with the daily urinary excretion of 17-hydroxycorticosteriod (17-OHCS) in days 2, 3, and 7 post burn. These data suggest that oxidative cellular damage correlates with burn severity and neuroendocrine system response modulates inflammation and oxidative cellular damage. Modulation of neuroendocrine system response and inflammation in the treatment in the early phase of burn may be useful to reduce the oxidative cellular damage and to prevent multiple organ failures in patients with extensive burn.

本文言語English
ページ(範囲)161-169
ページ数9
ジャーナルTohoku Journal of Experimental Medicine
211
2
DOI
出版ステータスPublished - 2007 2月 8
外部発表はい

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)

フィンガープリント

「Neuroendocrine system response modulates oxidative cellular damage in burn patients」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル