New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities

Kazuo Murota, Akihisa Tamura

研究成果: Conference article査読

33 被引用数 (Scopus)

抄録

The concept of M-convex functions plays a central role in "discrete convex analysis", a unified framework of discrete optimization recently developed by Murota and others. This paper gives two new characterizations of M- and M#-convex functions generalizing Gul and Stacchetti's results on the equivalence among the single improvement condition, the gross substitutes condition and the no complementarities condition for set functions (utility functions on {0,1} vectors) as well as Fujishige and Yang's observation on the connection to M-convexity. We also discuss implications of our results in an exchange economy with indivisible goods.

本文言語English
ページ(範囲)495-512
ページ数18
ジャーナルDiscrete Applied Mathematics
131
2
DOI
出版ステータスPublished - 2003 9 12
外部発表はい
イベントSubmodularity - Atlanta, GA, United States
継続期間: 2000 8 12000 8 1

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル