New perfluoro-dioxolane-based membranes for gas separations

Yoshiyuki Okamoto, Hao Zhang, Frantisek Mikes, Yasuhiro Koike, Zhenjie He, Timothy C. Merkel

研究成果: Article

28 引用 (Scopus)

抜粋

Perfluoropolymer membranes have found commercial use because of their unique gas separation properties and chemical resistance. To date, studies of gas transport in perfluoropolymers have been limited largely to variants of the commercially available polymers, Teflon® AF, Cytop, and Hyflon® AD. Here, we describe gas transport in composite membranes fabricated from copolymers of perfluoro(2-methylene-4,5-dimethyl-1,3-dioxolane) and perfluoro(2-methylene-1,3-dioxolane). These new perfluoro copolymer membranes have superior gas separation performance compared to the commercial perfluoropolymers for a number of gas pairs, including H2/CH4, He/CH4, N2/CH4, and CO2/CH4. For example, membranes based on 57mol% perfluoro(2-methylene-1,3-dioxolane) show H2/CH4 selectivity of 130 combined with a H2 permeance of 700gpu. These values far exceed an upper bound for commercial perfluoropolymers. The transport properties of the new perfluoro membranes depend strongly on the copolymer composition with increasing amounts of the efficient packing monomer perfluoro(2-methylene-1,3-dioxolane), yielding membranes with higher size selectivity and lower permeance.

元の言語English
ページ(範囲)412-419
ページ数8
ジャーナルJournal of Membrane Science
471
DOI
出版物ステータスPublished - 2014 12 1

    フィンガープリント

ASJC Scopus subject areas

  • Biochemistry
  • Materials Science(all)
  • Physical and Theoretical Chemistry
  • Filtration and Separation

これを引用