抄録
Postmenopausal osteoporosis and rheumatoid joint destruction result from increased osteoclast formation and bone resorption induced by receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor (TNF). Osteoclast formation induced by these cytokines requires NF-κB p50 and p52, c-Fos, and NFATc1 expression in osteoclast precursors. c-Fos induces NFATc1, but the relationship between NF-κB and these other transcription factors in osteoclastogenesis remains poorly understood. We report that RANKL and TNF can induce osteoclast formation directly from NF-κB p50/p52 double knockout (dKO) osteoclast precursors when either c-Fos or NFATc1 is expressed. RANKL- or TNF-induced c-Fos up-regulation and activation are abolished in dKO cells and in wild-type cells treated with an NF-κB inhibitor. c-Fos expression requires concomitant RANKL or TNF treatment to induce NFATc1 activation in the dKO cells. Furthermore, c-Fos expression increases the number and resorptive capacity of wild-type osteoclasts induced byTNF in vitro.Weconclude that NF-κB controls early osteoclast differentiation from precursors induced directly by RANKL and TNF, leading to activation of c-Fos followed by NFATc1. Inhibition of NF-κB should prevent RANKL- and TNF-induced bone resorption.
本文言語 | English |
---|---|
ページ(範囲) | 18245-18253 |
ページ数 | 9 |
ジャーナル | Journal of Biological Chemistry |
巻 | 282 |
号 | 25 |
DOI | |
出版ステータス | Published - 2007 6月 22 |
ASJC Scopus subject areas
- 生化学
- 分子生物学
- 細胞生物学