抄録
An edge e in a 3-connected graph G is contractible if the contraction of e in G results in a 3-connected graph; otherwise e is non-contractible. In this paper, we prove that the number of non-contractible edges in a 3-connected graph of order p≥5 is at most {Mathematical expression} and show that this upper bound is the best possible for infinitely many values of p.
本文言語 | English |
---|---|
ページ(範囲) | 357-364 |
ページ数 | 8 |
ジャーナル | Combinatorica |
巻 | 15 |
号 | 3 |
DOI | |
出版ステータス | Published - 1995 9月 1 |
ASJC Scopus subject areas
- 離散数学と組合せ数学
- 計算数学