Nonparametric Instrumental Regression with Errors in Variables

Karun Adusumilli, Taisuke Otsu

研究成果: Article

3 引用 (Scopus)

抜粋

This paper considers nonparametric instrumental variable regression when the endogenous variable is contaminated with classical measurement error. Existing methods are inconsistent in the presence of measurement error. We propose a wavelet deconvolution estimator for the structural function that modifies the generalized Fourier coefficients of the orthogonal series estimator to take into account the measurement error. We establish the convergence rates of our estimator for the cases of mildly/severely ill-posed models and ordinary/super smooth measurement errors. We characterize how the presence of measurement error slows down the convergence rates of the estimator. We also study the case where the measurement error density is unknown and needs to be estimated, and show that the estimation error of the measurement error density is negligible under mild conditions as far as the measurement error density is symmetric.

元の言語English
ページ(範囲)1256-1280
ページ数25
ジャーナルEconometric Theory
34
発行部数6
DOI
出版物ステータスPublished - 2018 12 1

ASJC Scopus subject areas

  • Social Sciences (miscellaneous)
  • Economics and Econometrics

フィンガープリント Nonparametric Instrumental Regression with Errors in Variables' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用