Numerical analysis of discretized N = (2,2) SYM on polyhedra

Syo Kamata, So Matsuura, Tatsuhiro Misumi, Kazutoshi Ohta

研究成果: Conference article査読

2 被引用数 (Scopus)

抄録

We perform a numerical simulation of the two-dimensional N = (2,2) supersymmetric Yang- Mills (SYM) theory on the discretized curved space. TheU(1)A anomaly of the continuum theory is maintained also in the discretized theory as an unbalance of the number of the fermions. In the process, we propose a new phase-quenched approximation, which we call the "anomaly-phasequenched (APQ) method", to make the partition function and observables well-defined by U(1)A phase cancellation. By adopting APQ method, we estimate the Ward-Takahashi identity for exact SUSY on lattice and clarify contribution of the pseudo zero-modes to the pfaffian phase.

本文言語English
ジャーナルProceedings of Science
Part F128557
出版ステータスPublished - 2016
イベント34th Annual International Symposium on Lattice Field Theory, LATTICE 2016 - Southampton, United Kingdom
継続期間: 2016 7 242016 7 30

ASJC Scopus subject areas

  • 一般

フィンガープリント

「Numerical analysis of discretized N = (2,2) SYM on polyhedra」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル