TY - GEN
T1 - Numerical investigation on characteristic lengths for gaseous detonation with dilute water spray
AU - Watanabe, Hiroaki
AU - Matsuo, Akiko
AU - Chinnayya, Ashwin
AU - Matsuoka, Ken
AU - Kawasaki, Akira
AU - Kasahara, Jiro
N1 - Publisher Copyright:
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Two-dimensional (2D) numerical simulations based on Eulerian-Lagrangian method are conducted to clarify the droplet behavior within its lifetime within the detonation cell. The simulation results are analyzed via 2D instantaneous flow fields and Favre spatiotemporal average technique, by applying the recycling block method. Gaseous detonation with dilute water droplets (WDs) propagates stably with a 4% velocity decrease compared to dry CJ velocity in the simulation conditions. From the instantaneous flow field analysis, the droplet breakup occurs primarily in jets, downstream of the transverse wave, nearby the collision of transverse waves, and the interaction between the transverse wave and the jets. The Favre average one-dimensional profiles by grouping WDs based on the initial shock strength that WDs experience reveal the droplet life inside the cellular structure. The mean equilibrium diameter after the breakup is not affected by the initial shock strength.
AB - Two-dimensional (2D) numerical simulations based on Eulerian-Lagrangian method are conducted to clarify the droplet behavior within its lifetime within the detonation cell. The simulation results are analyzed via 2D instantaneous flow fields and Favre spatiotemporal average technique, by applying the recycling block method. Gaseous detonation with dilute water droplets (WDs) propagates stably with a 4% velocity decrease compared to dry CJ velocity in the simulation conditions. From the instantaneous flow field analysis, the droplet breakup occurs primarily in jets, downstream of the transverse wave, nearby the collision of transverse waves, and the interaction between the transverse wave and the jets. The Favre average one-dimensional profiles by grouping WDs based on the initial shock strength that WDs experience reveal the droplet life inside the cellular structure. The mean equilibrium diameter after the breakup is not affected by the initial shock strength.
UR - http://www.scopus.com/inward/record.url?scp=85095979027&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095979027&partnerID=8YFLogxK
U2 - 10.2514/6.2019-4132
DO - 10.2514/6.2019-4132
M3 - Conference contribution
AN - SCOPUS:85095979027
SN - 9781624105906
T3 - AIAA Propulsion and Energy Forum and Exposition, 2019
BT - AIAA Propulsion and Energy Forum and Exposition, 2019
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Propulsion and Energy Forum and Exposition, 2019
Y2 - 19 August 2019 through 22 August 2019
ER -