Numerical simulation of mixing enhancement and suppression in two-dimensional mixing layer

Masayuki Kawagoe, Koji Fukagata

研究成果: Conference contribution

抄録

Direct numerical simulation of two-dimensional mixing layer with time-periodic forcing mimicking the input of piezo-film actuator is performed. Three different forcing frequencies (i.e., the natural frequency, its first subharmonic and second sub-harmonic frequencies) are examined. Simplified chemical reactions are also taken into account. We investigate whether mixing is promoted or suppressed using two indices: the momentum thickness and the concentration of chemical product. The momentum thickness indicates that the forcing enhances the development of mixing layer near the inlet and suppresses it in the region right downstream. Instantaneous vorticity fields show that the location where the vortex pairing starts depend on the forcing frequency. The effect of forcing on the mixing layer development strongly depends on its frequency: in particular, the forcing at the second subharmonic frequency is found to suppress the development of mixing layer in a wide region. On the other hand, from the chemical product concentration, mixing is found to be promoted regardless of the forcing frequency. We also investigate how far the control effect lasts. It is revealed that in the downstream region the mixing layer thickness develops linearly regardless of the forcing frequency, which in turn suggests that the present numerical simulation is performed in a computational domain large enough to examine the control effect.

本文言語English
ホスト出版物のタイトルASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
ページ3871-3877
ページ数7
PARTS A, B, C, D
DOI
出版ステータスPublished - 2011 12 1
イベントASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011 - Hamamatsu, Japan
継続期間: 2011 7 242011 7 29

出版物シリーズ

名前ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
番号PARTS A, B, C, D
1

Other

OtherASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
CountryJapan
CityHamamatsu
Period11/7/2411/7/29

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

フィンガープリント 「Numerical simulation of mixing enhancement and suppression in two-dimensional mixing layer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル