Observation of silver and hydrogen ion binding to self-assembled monolayers using chemically modified AFM tips

Takashi Ito, Daniel Citterio, Philippe Bühlmann, Yoshio Umezawa

研究成果: Article査読

23 被引用数 (Scopus)

抄録

Atomic force microscopy (AFM) was used to study binding of ionic species (Ag+ and H+) to planar substrates and AFM tips chemically modified with self-assembled monolayers (SAMs) formed with terminally functionalized organosiloxanes. Adhesion forces between tips and substrates modified with methylsulfanyl-terminated SAMs and immersed into aqueous Ag+ solutions increased with an increase in the Ag+ concentration up to ≈ 10 mM Ag+ and then decreased with a further increase in the Ag+ concentration. Contact angles on the same substrates continuously decreased as the concentration of Ag+ increased. The increase in adhesion force between methylsulfanyl groups with an increase in the Ag+ concentration up to ≈ 10 mM Ag+ can be explained by simultaneous binding of Ag+ to methylsulfanyl groups on the tip and on the substrate, resulting in 1:2 complexes. The decrease in the adhesion force at very high Ag+ concentrations likely reflects the formation of 1:1 complexes in the presence of an excess of Ag+, resulting in electrostatic repulsion between tips and substrates that both bear positive charges due to Ag+ binding. On the other hand, for amino- or 2-imidazolin-1-yl-terminated SAMs, adhesion forces and contact angles similarly decreased from pH 10 to 2. This decrease in adhesion force with increasing H+ concentration seems to reflect preferential formation of 1:1 complexes, resulting in repulsion between the positively charged tip and substrate surfaces. Adhesion due to the formation of 1:2 complexes was not observed for H+, which is consistent with the low stability of such complexes in solution. These results demonstrate that adhesion forces can be used to observe sandwich-type binding of metal ions between ligands immobilized on solid substrates and chemically modified AFM tips.

本文言語English
ページ(範囲)2788-2793
ページ数6
ジャーナルLangmuir
15
8
DOI
出版ステータスPublished - 1999 4月 13
外部発表はい

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 表面および界面
  • 分光学
  • 電気化学

フィンガープリント

「Observation of silver and hydrogen ion binding to self-assembled monolayers using chemically modified AFM tips」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル