On 2-Factors in r-Connected (K1, k, P4)-Free Graphs

Yoshimi Egawa, Jun Fujisawa, Shinya Fujita, Katsuhiro Ota

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In [3], Faudree et al. considered the proposition “Every (X, Y)-free graph of sufficiently large order has a 2-factor,” and they determined those pairs (X, Y) which make this proposition true. Their result says that one of them is (X, Y) = (K1,4, P4). In this paper, we investigate the existence of 2-factors in r-connected (K1, k, P4)-free graphs. We prove that if r ≥ 1 and k ≥ 2, and if G is an r-connected (K1, k, P4)-free graph with minimum degree at least k − 1, then G has a 2-factor with at most max(k − r, 1) components unless (k − 1)K2 + (k − 2)K1 ⊆ G ⊆ (k − 1)K2 + Kk−2. The bound on the minimum degree is best possible.

本文言語English
ページ(範囲)415-420
ページ数6
ジャーナルTokyo Journal of Mathematics
31
2
DOI
出版ステータスPublished - 2008

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On 2-Factors in r-Connected (K1, k, P4)-Free Graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル