On 2-factors in star-free graphs

Olga Fourtounelli, Jun Fujisawa, P. Katerinis

研究成果: Article

抜粋

In this paper we give a sharp minimum degree condition for a 2-connected star-free graph to have a 2-factor containing specified edges. Let G be a 2-connected K 1,n-free graph with minimum degree n + d and I ⊂ E(G). If one of the followings holds, then G has a 2-factor which contains every edge in I: i) n = 3, d ≥ 1, |I| ≤ 2 and |V(G)| ≥ 8 if |I| = 2; ii) n = 4, d ≥ 1, |I| ≤ 2 and |V(G)| ≥ 11 if |I| = 2; iii) n ≥ 5, d ≥ 1 and |I| ≤ 1; iv) n ≥ 5, d ≥ [(√4n - 3 + l)/2] and |I| ≤ 2.

元の言語English
ページ(範囲)203-218
ページ数16
ジャーナルSUT Journal of Mathematics
44
発行部数2
出版物ステータスPublished - 2008 12 1
外部発表Yes

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント On 2-factors in star-free graphs' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Fourtounelli, O., Fujisawa, J., & Katerinis, P. (2008). On 2-factors in star-free graphs. SUT Journal of Mathematics, 44(2), 203-218.