On 2-factors with a specified number of components in line graphs

S. Chiba, Y. Egawa, J. Fujisawa, A. Saito, I. Schiermeyer, M. Tsugaki, T. Yamashita

研究成果: Article査読

抄録

Kaiser and Vrana [European J. Combin. 33 (2012), 924-947] showed that every 5-connected line graph of minimum degree at least 6 is hamiltonian, which gives a partial solution to Thomassen’s Conjecture on hamiltonicity of line graphs [J. Graph Theory 10 (1986), 309-324]. In this paper, we prove that every 5-connected line graph of sufficiently large order compared with a given positive integer k and of minimum degree at least 6 also has a 2-factor with exactly k cycles. In order to show this result, we investigate minimum degree conditions for the existence of such a 2-factor in hamiltonian line graphs.

本文言語English
ページ(範囲)541-546
ページ数6
ジャーナルActa Mathematica Universitatis Comenianae
88
3
出版ステータスPublished - 2019 9 2

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On 2-factors with a specified number of components in line graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル