On 3-coloring of plane triangulations

Atsuhiro Nakamoto, Katsuhiro Ota, Mamoru Watanabe

研究成果: Article査読

抄録

For a 3-vertex coloring, a face of a triangulation whose vertices receive all three colors is called a vivid face with respect to it. In this paper, we show that for any triangulation G with n faces, there exists a coloring of G with at least 1/2n faces and construct an infinite series of plane triangulations such that any 3-coloring admits at most 1/5 (3n - 2) vivid faces.

本文言語English
ページ(範囲)157-162
ページ数6
ジャーナルArs Combinatoria
75
出版ステータスPublished - 2005 4 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「On 3-coloring of plane triangulations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル