On first passage time structure of random walks

Ushio Sumita, Yasushi Masuda

研究成果: Article査読

10 被引用数 (Scopus)

抄録

For continuous time birth-death processes on {0,1,2,...}, the first passage time T+n from n to n + 1 is always a mixture of (n + 1) independent exponential random variables. Furthermore, the first passage time T0,n+1 from 0 to (n + 1) is always a sum of (n + 1) independent exponential random variables. The discrete time analogue, however, does not necessarily hold in spite of structural similarities. In this paper, some necessary and sufficient conditions are established under which T+n and T0,n+1 for discrete time birth-death chains become a mixture and a sum, respectively, of (n + 1) independent geometric random variables on {1,2,...};. The results are further extended to conditional first passage times.

本文言語English
ページ(範囲)133-147
ページ数15
ジャーナルStochastic Processes and their Applications
20
1
DOI
出版ステータスPublished - 1985 7月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「On first passage time structure of random walks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル