On Fourier-Jacobi expansions of real analytic Eisenstein series of degree 2

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We discuss the Fourier-Jacobi expansion of certain vector valued Eisenstein series of degree 2, which is also real analytic. We show that its coefficients of index ±1 can be described by using a generating series of real analytic Jacobi forms. We also describe all the coefficients of general indices in suitable manners. Our method can be applied to study another Fourier series of Saito-Kurokawa type that is associated with a cusp form of one variable and half-integral weight. Then, following the arguments in the holomorphic case, we find that the Fourier series indeed defines a real analytic Siegel modular form of degree 2.

本文言語English
ページ(範囲)85-122
ページ数38
ジャーナルAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg
84
1
DOI
出版ステータスPublished - 2014 4

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On Fourier-Jacobi expansions of real analytic Eisenstein series of degree 2」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル