On Grouping Effect of Sparse Stable Outlier-Robust Regression

Kyohei Suzuki, Masahiro Yukawa

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

This paper elucidates the grouping effect of the sparse stable outlier-robust regression (S-SORR) estimator which exploits the minimax concave (MC) penalty and the Tikhonov regularization simultaneously together with the MC loss. The main theoretical result is the following: where μ 1 > 0$ is the regularization parameter, and ai and aj are the unit vectors with their associated coefficients hat xi and hat xj. Remarkably, the bound is independent of possible outliers which may be contained in the observation vector y, whereas the bound for the popular elastic net estimator increases in proportion to the norm of y which is largely affected by outliers. Numerical examples show that S-SORR extracts the group structure correctly under huge outliers.

本文言語English
ホスト出版物のタイトル2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing, MLSP 2022
出版社IEEE Computer Society
ISBN(電子版)9781665485470
DOI
出版ステータスPublished - 2022
イベント32nd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2022 - Xi'an, China
継続期間: 2022 8月 222022 8月 25

出版物シリーズ

名前IEEE International Workshop on Machine Learning for Signal Processing, MLSP
2022-August
ISSN(印刷版)2161-0363
ISSN(電子版)2161-0371

Conference

Conference32nd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2022
国/地域China
CityXi'an
Period22/8/2222/8/25

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • 信号処理

引用スタイル