On Iwasawa theory, zeta elements for Gm, and the equivariant Tamagawa number conjecture

David Burns, Masato Kurihara, Takamichi Sano

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We develop an explicit “higher-rank” Iwasawa theory for zeta elements associated to the multiplicative group over abelian extensions of number fields. We show this theory leads to a concrete new strategy for proving special cases of the equivariant Tamagawa number conjecture and, as a first application of this approach, we prove new cases of the conjecture over natural families of abelian CM-extensions of totally real fields for which the relevant p-adic L-functions possess trivial zeroes.

本文言語English
ページ(範囲)1527-1571
ページ数45
ジャーナルAlgebra and Number Theory
11
7
DOI
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「On Iwasawa theory, zeta elements for G<sub>m</sub>, and the equivariant Tamagawa number conjecture」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル