On Kronecker limit formulas for real quadratic fields

Shuji Yamamoto

研究成果: Article査読

10 被引用数 (Scopus)

抄録

Let ζ (s, C) be the partial zeta function attached to a ray class C of a real quadratic field. We study this zeta function at s = 1 and s = 0, combining some ideas and methods due to Zagier and Shintani. The main results are (1) a generalization of Zagier's formula for the constant term of the Laurent expansion at s = 1, (2) some expressions for the value and the first derivative at s = 0, related to the theory of continued fractions, and (3) a simple description of the behavior of Shintani's invariant X (C), which is related to ζ (0, C), when we change the signature of C.

本文言語English
ページ(範囲)426-450
ページ数25
ジャーナルJournal of Number Theory
128
2
DOI
出版ステータスPublished - 2008 2
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「On Kronecker limit formulas for real quadratic fields」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル