On quasi ordinal diagram systems

Mitsuhiro Okada, Yuta Takahashi

研究成果: Conference article査読

抄録

The purposes of this note are the following two; we first generalize Okada-Takeuti’s well quasi ordinal diagram theory, utilizing the recent result of Dershowitz-Tzameret’s version of tree embedding theorem with gap conditions. Second, we discuss possible use of such strong ordinal notation systems for the purpose of a typical traditional termination proof method for term rewriting systems, especially for second-order (pattern-matching-based) rewriting systems including a rewrite-theoretic version of Buchholz’s hydra game.

本文言語English
ページ(範囲)38-49
ページ数12
ジャーナルElectronic Proceedings in Theoretical Computer Science, EPTCS
288
DOI
出版ステータスPublished - 2019
イベント10th International Workshop on Computing with Terms and Graphs, TERMGRAPH 2018 - Oxford, United Kingdom
継続期間: 2018 7月 72018 7月 7

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「On quasi ordinal diagram systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル