On the central limit theorem for non-archimedean diophantine approximations

Eveyth Deligero, Hitoshi Nakada

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider a Diophantine inequality: [InlineMediaObject not available: see fulltext.] on the set of formal Laurent series of negative degree. We show that under these two conditions: (i) q n Ψ(n) is a monotone non-increasing and (ii) ∑n q n Ψ(n)=∞, a central limit theorem holds for the number of solutions. The proof is based on the construction of a non-stationary one dependent process associated with the Diophantine inequality.

本文言語English
ページ(範囲)51-64
ページ数14
ジャーナルManuscripta Mathematica
117
1
DOI
出版ステータスPublished - 2005 5 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On the central limit theorem for non-archimedean diophantine approximations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル