On the number of omitted values by a meromorphic function of finite energy and heat diffusions

研究成果: Article

4 引用 (Scopus)

抜粋

We give a bound of the number of omitted values by a meromorphic function of finite energy on parabolic manifolds in terms of Ricci curvature and the energy of the functions. An analogy of Nevanlinna's theorems based on heat diffusions is used. We also show that meromorphic functions whose energy satisfies some growth condition on algebraic varieties can omit at most two points as a corollary to our main theorems.

元の言語English
ページ(範囲)1008-1025
ページ数18
ジャーナルJournal of Geometric Analysis
20
発行部数4
DOI
出版物ステータスPublished - 2010 10 1

ASJC Scopus subject areas

  • Geometry and Topology

フィンガープリント On the number of omitted values by a meromorphic function of finite energy and heat diffusions' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用