On the number of vertices with a given degree in a Galton-Watson tree

研究成果: Article

11 引用 (Scopus)

抜粋

Let Yk (ω) (k ≥ 0) be the number of vertices of a Galton-Watson tree ω that have k children, so that Z (ω) := ∑k≥0 Yk(ω) is the total progeny of w. In this paper, we will prove various statistical properties of Z and Yk. We first show, under a mild condition, an asymptotic expansion of P(Z = n) as n → ∞, improving the theorem of Otter (1949). Next, we show that yk(ω) := ∑ j=0k Yj (ω) is the total progeny of a new Galton-Watson tree that is hidden in the original tree w. We then proceed to study the joint probability distribution of Z and {Yk}k, and show that, as n → ∞, {Yk/n}k is asymptotically Gaussian under the conditional distribution P(· Z = n).

元の言語English
ページ(範囲)229-264
ページ数36
ジャーナルAdvances in Applied Probability
37
発行部数1
DOI
出版物ステータスPublished - 2005 3 1
外部発表Yes

ASJC Scopus subject areas

  • Statistics and Probability
  • Applied Mathematics

フィンガープリント On the number of vertices with a given degree in a Galton-Watson tree' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用