On the spectral resolution of the quantum Toda lattice

研究成果: Article査読

抄録

In this paper we study the solutions of the equation det(λ-L) ψ = 0, where L is the Lax operator of the quantum Toda lattice. The solutions of the equation are determined by the eigenvectors of L, LΨ = λΨ. In the classical case, there exists the canonical embedding of n-dimensional Toda lattice ⊂→ n + 1-dimensional Toda lattice. We show that the quantum analogue of this embedding exists. In the classical case, the Lax operator of the Toda lattice lies in sl(n). In the quantum case, this fact corresponds to the restriction of det(λ - L) ψ = 0 to the hyperplane x1 + ⋯ + Xn = constant. We make clear the gap between the solution space of the restricted case and that of the non-restricted case. In the example of the 2-dimensional case, we show that the Bessel functions appear as the basis of the solution space of the above equation.

本文言語English
ページ(範囲)404-424
ページ数21
ジャーナルJournal of Functional Analysis
185
2
DOI
出版ステータスPublished - 2001 10 1
外部発表はい

ASJC Scopus subject areas

  • 分析

フィンガープリント

「On the spectral resolution of the quantum Toda lattice」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル